MathNet.Numerics 4.6.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
21
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
17
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
15
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
14
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
13
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
12
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
11
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4

Polynomial: New Polynomial data structure ~Tobias Glaubach Statistics: Correlate.Auto auto correlation ~Tobias Glaubach

.NET Framework 4.0

  • No dependencies.

.NET Framework 4.6.1

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta2 15 03/06/2025
6.0.0-beta1 16 11/17/2024
5.0.0 14 11/19/2024
5.0.0-beta02 19 11/19/2024
5.0.0-beta01 19 11/19/2024
5.0.0-alpha16 17 11/19/2024
5.0.0-alpha15 18 11/19/2024
5.0.0-alpha14 15 11/19/2024
5.0.0-alpha13 14 11/19/2024
5.0.0-alpha12 14 11/19/2024
5.0.0-alpha11 14 11/19/2024
5.0.0-alpha10 13 11/19/2024
5.0.0-alpha09 15 11/19/2024
5.0.0-alpha08 14 11/19/2024
5.0.0-alpha07 14 11/19/2024
5.0.0-alpha06 13 11/19/2024
5.0.0-alpha05 12 11/19/2024
5.0.0-alpha04 13 11/19/2024
5.0.0-alpha03 14 11/19/2024
5.0.0-alpha02 14 11/19/2024
5.0.0-alpha01 16 11/19/2024
4.15.0 17 11/19/2024
4.14.0 14 11/19/2024
4.13.0 14 11/19/2024
4.12.0 18 11/19/2024
4.11.0 15 11/19/2024
4.10.0 19 11/19/2024
4.9.1 12 11/19/2024
4.9.0 11 11/19/2024
4.8.1 13 11/19/2024
4.8.0 15 11/19/2024
4.8.0-beta02 16 11/19/2024
4.8.0-beta01 19 11/19/2024
4.7.0 15 11/19/2024
4.6.0 12 11/19/2024
4.5.1 16 11/19/2024
4.5.0 10 11/19/2024
4.4.1 15 11/19/2024
4.4.0 14 11/19/2024
4.3.0 14 11/19/2024
4.2.0 15 11/19/2024
4.1.0 16 11/19/2024
4.0.0 14 11/19/2024
4.0.0-beta07 14 11/19/2024
4.0.0-beta06 19 11/19/2024
4.0.0-beta05 17 11/19/2024
4.0.0-beta04 20 11/19/2024
4.0.0-beta03 17 11/19/2024
4.0.0-beta02 19 11/19/2024
4.0.0-beta01 18 11/19/2024
4.0.0-alpha04 14 11/19/2024
4.0.0-alpha03 15 11/19/2024
4.0.0-alpha02 16 11/19/2024
4.0.0-alpha01 17 11/19/2024
3.20.2 12 11/19/2024
3.20.1 15 11/19/2024
3.20.0 12 11/19/2024
3.20.0-beta01 17 11/19/2024
3.19.0 11 11/19/2024
3.18.0 14 11/19/2024
3.17.0 15 11/19/2024
3.16.0 14 11/19/2024
3.15.0 16 11/19/2024
3.14.0-beta03 18 11/19/2024
3.14.0-beta02 17 11/19/2024
3.14.0-beta01 16 11/19/2024
3.13.1 14 11/19/2024
3.13.0 13 11/19/2024
3.12.0 13 11/19/2024
3.11.1 13 11/19/2024
3.11.0 14 11/19/2024
3.10.0 14 11/19/2024
3.9.0 11 11/19/2024
3.8.0 10 11/19/2024
3.7.1 14 11/19/2024
3.7.0 14 11/19/2024
3.6.0 14 11/19/2024
3.5.0 13 11/19/2024
3.4.0 11 11/19/2024
3.3.0 15 11/19/2024
3.3.0-beta2 17 11/19/2024
3.3.0-beta1 20 11/19/2024
3.2.3 15 11/19/2024
3.2.2 17 11/19/2024
3.2.1 14 11/19/2024
3.2.0 19 11/19/2024
3.1.0 14 11/19/2024
3.0.2 16 11/19/2024
3.0.1 16 11/19/2024
3.0.0 12 11/19/2024
3.0.0-beta05 17 11/19/2024
3.0.0-beta04 19 11/19/2024
3.0.0-beta03 19 11/19/2024
3.0.0-beta02 17 11/19/2024
3.0.0-beta01 18 11/19/2024
3.0.0-alpha9 14 11/19/2024
3.0.0-alpha8 15 11/19/2024
3.0.0-alpha7 15 11/18/2024
3.0.0-alpha6 19 11/19/2024
3.0.0-alpha5 15 11/19/2024
3.0.0-alpha4 17 11/19/2024
3.0.0-alpha1 16 11/19/2024
2.6.2 11 11/19/2024
2.6.1 12 11/19/2024
2.6.0 12 11/19/2024
2.5.0 14 11/19/2024
2.4.0 15 11/19/2024
2.3.0 14 11/19/2024
2.2.1 13 11/19/2024
2.2.0 13 11/19/2024
2.1.2 14 11/19/2024
2.1.1 17 11/19/2024