MathNet.Numerics 6.0.0-beta2

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .NET 5.0 or higher, .NET Standard 2.0 and .NET Framework 4.6.1 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
21
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
17
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
15
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
14
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
13
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
12
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
11
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4

intermediate beta, mainly to verify we can still do releases many contributions, proper release notes with attributions will follow. thank you all!

.NET Framework 4.8

  • No dependencies.

.NET 6.0

  • No dependencies.

.NET 8.0

  • No dependencies.

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta2 15 03/06/2025
6.0.0-beta1 15 11/17/2024
5.0.0 13 11/19/2024
5.0.0-beta02 19 11/19/2024
5.0.0-beta01 19 11/19/2024
5.0.0-alpha16 17 11/19/2024
5.0.0-alpha15 17 11/19/2024
5.0.0-alpha14 15 11/19/2024
5.0.0-alpha13 14 11/19/2024
5.0.0-alpha12 13 11/19/2024
5.0.0-alpha11 13 11/19/2024
5.0.0-alpha10 12 11/19/2024
5.0.0-alpha09 15 11/19/2024
5.0.0-alpha08 13 11/19/2024
5.0.0-alpha07 14 11/19/2024
5.0.0-alpha06 13 11/19/2024
5.0.0-alpha05 12 11/19/2024
5.0.0-alpha04 13 11/19/2024
5.0.0-alpha03 14 11/19/2024
5.0.0-alpha02 14 11/19/2024
5.0.0-alpha01 16 11/19/2024
4.15.0 17 11/19/2024
4.14.0 14 11/19/2024
4.13.0 14 11/19/2024
4.12.0 18 11/19/2024
4.11.0 15 11/19/2024
4.10.0 18 11/19/2024
4.9.1 12 11/19/2024
4.9.0 11 11/19/2024
4.8.1 13 11/19/2024
4.8.0 14 11/19/2024
4.8.0-beta02 16 11/19/2024
4.8.0-beta01 18 11/19/2024
4.7.0 14 11/19/2024
4.6.0 12 11/19/2024
4.5.1 14 11/19/2024
4.5.0 9 11/19/2024
4.4.1 14 11/19/2024
4.4.0 13 11/19/2024
4.3.0 14 11/19/2024
4.2.0 15 11/19/2024
4.1.0 16 11/19/2024
4.0.0 13 11/19/2024
4.0.0-beta07 14 11/19/2024
4.0.0-beta06 19 11/19/2024
4.0.0-beta05 17 11/19/2024
4.0.0-beta04 20 11/19/2024
4.0.0-beta03 17 11/19/2024
4.0.0-beta02 19 11/19/2024
4.0.0-beta01 18 11/19/2024
4.0.0-alpha04 14 11/19/2024
4.0.0-alpha03 15 11/19/2024
4.0.0-alpha02 16 11/19/2024
4.0.0-alpha01 17 11/19/2024
3.20.2 12 11/19/2024
3.20.1 15 11/19/2024
3.20.0 12 11/19/2024
3.20.0-beta01 16 11/19/2024
3.19.0 11 11/19/2024
3.18.0 14 11/19/2024
3.17.0 15 11/19/2024
3.16.0 13 11/19/2024
3.15.0 16 11/19/2024
3.14.0-beta03 18 11/19/2024
3.14.0-beta02 17 11/19/2024
3.14.0-beta01 16 11/19/2024
3.13.1 14 11/19/2024
3.13.0 13 11/19/2024
3.12.0 13 11/19/2024
3.11.1 13 11/19/2024
3.11.0 14 11/19/2024
3.10.0 14 11/19/2024
3.9.0 11 11/19/2024
3.8.0 10 11/19/2024
3.7.1 13 11/19/2024
3.7.0 13 11/19/2024
3.6.0 14 11/19/2024
3.5.0 12 11/19/2024
3.4.0 11 11/19/2024
3.3.0 14 11/19/2024
3.3.0-beta2 17 11/19/2024
3.3.0-beta1 20 11/19/2024
3.2.3 14 11/19/2024
3.2.2 16 11/19/2024
3.2.1 13 11/19/2024
3.2.0 18 11/19/2024
3.1.0 13 11/19/2024
3.0.2 15 11/19/2024
3.0.1 15 11/19/2024
3.0.0 11 11/19/2024
3.0.0-beta05 17 11/19/2024
3.0.0-beta04 19 11/19/2024
3.0.0-beta03 18 11/19/2024
3.0.0-beta02 17 11/19/2024
3.0.0-beta01 18 11/19/2024
3.0.0-alpha9 12 11/19/2024
3.0.0-alpha8 14 11/19/2024
3.0.0-alpha7 15 11/18/2024
3.0.0-alpha6 18 11/19/2024
3.0.0-alpha5 14 11/19/2024
3.0.0-alpha4 17 11/19/2024
3.0.0-alpha1 16 11/19/2024
2.6.2 11 11/19/2024
2.6.1 12 11/19/2024
2.6.0 12 11/19/2024
2.5.0 12 11/19/2024
2.4.0 15 11/19/2024
2.3.0 14 11/19/2024
2.2.1 13 11/19/2024
2.2.0 13 11/19/2024
2.1.2 13 11/19/2024
2.1.1 16 11/19/2024